Как работать с мегаомметром

Назначение и принцип работы

Мегаомметр – измерительный прибор, предназначенный для измерения сопротивления изоляции проводов и других токоведущих частей и элементов схемы. Его чувствительность достаточна, чтобы указать, на каком участке линии изоляция проводов (либо клемм) состарилась настолько, что она может пробиться под действием высокого напряжения. Пробой изоляции в сетях и электроцепях высокого напряжения – источник шагового напряжения, ток которого утекает в землю, и возможного пожара.


Кроме измерительной головки и источника питания, в состав мегаомметра входят переключатель диапазонов измеряемого сопротивления и добавочные резисторы, которые и устанавливают этот предел. Для подключения прибора нужны клеммы, через которые тот подсоединяется к измеряемой цепи или линии посредством щупов с изолированными друг от друга проводами. Для надёжности подключения концы щупов, подсоединяемые к замеряемой цепи, оснащены «крокодилами», отдалённо напоминающими прищепку. Использование «крокодила» даёт возможность установить надёжный электрический контакт. Для питания, без которого сопротивление замеряемой среды не измерить, применяют либо отдельный сетевой адаптер, либо батарейку или аккумулятор. Он, в свою очередь, выдаёт напряжение, берущееся в расчёт сопротивления.

В отличие от (кило) омметров, где подаваемое на замеряемую цепь напряжение не превышает одного или нескольких вольт, эта величина в мегаомметрах задаётся в пределах 50-5000 В, что вынуждает замерщиков применять диэлектрические перчатки, резиновый ковёр и обувь с такой же подошвой, и надёжно изолированный инструмент. Принцип действия мегаомметра, как и его собрата – омметра, основан на применении закона Ома, которым руководствуются все электрики и энергетики. Согласно этому закону, зная напряжение (или ЭДС источника питания) и измерив ток утечки, возможно определить действующее в данный момент сопротивление среды, через которую этот ток и проходит. До проведения измерений участок линии или цепи, на котором замеряется сопротивление, отключают от общей схемы.

По результатам измерения вычисляется действующее значение электрической прочности (в вольтах на метр толщины изолятора, но используют дольно-кратную единицу – киловольты на миллиметр слоя диэлектрика). Существует приблизительный норматив на минимальное количество мегаом, в который должен вписываться любой из проверяемых на «пробойность» электроизоляторов. Например, материал платы кинескопа – текстолит, в ныне устаревших телевизорах не обладал объёмным сопротивлением менее, чем 100 мегаом на миллиметр толщины (между печатными дорожками), так как на электроды кинескопа подавалось напряжение от 4 до 25 киловольт.

Ток утечки должен быть таким, чтобы им можно было пренебречь, то есть на порядок меньшим, чем его рабочее значение. Однако ГОСТ 183-74 не диктует более чётких значений объёмного и поверхностного значений сопротивления диэлектрика – конкретные требования к нему вычисляются инженерами-конструкторами ещё на этапе системо- и схемотехнического проектирования того или иного устройства. Если общее сопротивление проверяемого участка линии или цепи оказалось меньше этого значения – изолятор необходимо заменить, пока утечка тока не стала заметной либо не привела к пробою изолятора и замыканию.

Измерение сопротивления в изоляции

Поняв, как работать мегаомметром, перед его использованием стоит ознакомиться со схематическими особенностями, убедиться в исправности и надлежащем обеспечении защиты. Обрабатываемая зона выводится из эксплуатации. Прибор на предмет исправности проверяется следующим образом:

  • края измерительного провода между собой закорачиваются;
  • далее генератором на них подается напряжение;
  • если устройство полностью исправно, в закороченной цепи показатели измерения равняются нулю;
  • следующий шаг — разъединение проводов, отведение их в стороны с проведение повторного замера;
  • в норме на стрелочной шкале megger высвечивается сигнал безопасности.

Процедура проверки изоляции осуществляется в строго обозначенной последовательности. Заземление переносного типа подводится к контуру, на участке полностью исключается наличие напряжения. После этого создается измерительная схема. В нее подается напряжение калиброванного типа до момента выравнивания емкостного заряда. Следующим этапом фиксируется отсчет и вырабатываемая генератором энергия выравнивается. Остаточный заряд нейтрализуется переносным заземлением.

Узнав, для чего нужен мегаомметр и как он работает, следует разобраться в простых нюансах. Модели со стрелочным корпусом должны ориентироваться на горизонтальное размещение во время работы. В противном случае дополнительных погрешностей не избежать. Что касается усовершенствованных установок, они работают в любом положении с максимальной точностью.

Принцип работы


Мегаомметр представляет собой полезное изобретение, с помощью которого можно проверить показатели изоляционного слоя в проводке. Прибор относят к классу профессиональных, но большинство современных моделей поддерживает сразу несколько функций, например, анализ состояния электросети, проверка точного напряжения и так далее. В связи с этим, многие люди желают приобрести собственный мегаомметр, чтобы использовать его для бытовых задач.

С помощью специальных щупов устройство присоединяется к измеряемой линии, а затем запускается. В каждом приборе установлен источник постоянного напряжения, осуществляющий генерацию высокого напряжения для проверки изоляции. Что касается базовых функций и набора калибровочных напряжений, то они отличаются в зависимости от конкретной модели. Если у дешевых вариантов присутствует только один режим работы, то более дорогие характеризуются высокой производительностью и комбинированными возможностями.

В настоящее время на рынке доступны следующие разновидности приборов:

  1. Старые модели, оснащенные встроенной динамомашиной. Для запуска устройства необходимо повернуть специальную ручку.
  2. Новые приборы с электронной схемой работы. Они подключаются к бытовой электросети или внутренним аккумуляторам, используя их в качестве источника напряжения. Среди поддерживаемых режимов и функций присутствует не только контроль изоляции проводки, но и оценка текущего напряжения, низкоомного сопротивления и других параметров. По сути, многие модели могут заменить мультиметр, так как спектр калибровочных напряжений бывает достаточно обширным.

Калиброванное напряжение и его величина выставляется с помощью специального переключателя. Для точной настройки необходимо учитывать разновидность системы, которая поддается анализу. Полученные измерения будут продемонстрированы на экране или соответствующей шкале. Чтобы упростить процесс изучения результатов, в моделях стрелочного типа шкала откалибрована в КОм или МОм.

Принцип действия прибора

Мегаомметр генерирует напряжение собственным высоковольтным преобразователем, а миллиамперметр фиксирует ток, в измеряемой цепи. Из школьного курса физики мы знаем закон Ома, и связь между сопротивлением R, которое равно U деленное на I.

В настоящее время распространение получили цифровые измерители приборы, благодаря своей компактности и легкости, но наравне с ними до сих пор ходят стрелочные модели с ручной динамо-машиной. Сейчас мы рассмотрим, как правильно пользоваться мегаомметром старого образца и нового.

Обращаем ваше внимание на то, что некоторые называют прибор для измерения сопротивления изоляции мегомметром. Это не совсем правильное название, т.к

если слово разбить по частям, получится приставка «мега», единица измерения «Ом» и «метр» (с греческого переводится как мера).

Методика проведения измерений

Изначально нужно помнить о том, что результат замера сопротивления изоляции кабелей сильно зависит от состояния влажности и температуры в комнате, где проводится мероприятие. При низкой температуре в структуре электропровода застрянут мелкие части льда, который, как известно, не является проводником электричества, соответственно, мегаомметр не сможет засечь эти частички в нем. Исходя из этого, рекомендуемая температура проведения проверок – от -30 до 50 C. Влажность воздуха должна составлять до 85-90 %. Это также зависит от модели кабели и материала оболочки, все это стоит уточнять в приложенной документации.

Также от конкретной модели проводника зависит величина напряжения, необходимые условия диагностики и требуемый участок кабеля.

Прежде всего нужно провести несколько приготовлений, осуществление которых повысит продуктивность проводимых мероприятий.

Выполняется проверка устройства. Фиксируются показатели мегаомметра при разомкнутых (стрелка прибора указывает на отметку бесконечности) и замкнутых проводниках (стрелка прибора указывает на ноль).

Следующее – удостовериться в отсутствии напряжения на проводнике, для этого надо отключить его от сети и заземлить токоведущие жилы проверяемого элемента. Наличие напряжения обязательно проверяется при помощи указателя напряжения, предварительно испытанном на электроустановке исходя из правил охраны труда. Проводить проверку при хотя бы частичном присутствии напряжения запрещено.

Перед тем как начнется диагностика, убедитесь в том, что все детали с трансформаторами отключены от диагностируемой детали.

Для начала диагностики прибор ставят в горизонтальное положение согласно рабочей инструкции. Измерение сопротивление у проводников напряжением меньше 50 В делается под электронапряжением 100 В. Проверку электроустановок до 50 В напряжением 500 В включительно проводить настоятельно не рекомендуется.


При снятии данных мегаомметра удостоверьтесь в том, что стрелка стоит в стабильной позиции. Для этого крутите рукоять мегаомметра со скоростью 120-140 об/мин. Если вам необходимо знать коэффициент абсорбции электропровода, снимайте данные стрелки по прошествии 16 секунд после старта вращения рукояти устройства. Если же нужно просто узнать показатели сопротивления, то снимайте показатели, после того как стрелка полностью замрет, но не раньше минуты.

Когда проверка сопротивления изоляции кабеля завершена, те детали, которые были диагностированы со слабым сопротивлением, должны быть разобраны с целью выявить и устранить повреждение.

Измерение проводится:

  • между фазными жилами — А-В, В-С, А-С
  • между фазными жилами и нулем — А-N, В-N, С-N;
  • между фазными жилами и землей, если пятижильный провод — А-РЕ, В-РЕ, С-РЕ;
  • между нулем и землей — N-PE. В этом случае сначала отключите ноль от нулевой шины.

Итак, диагностика проведена и результаты получены, теперь нужно определить уровень сопротивления изоляции проводов. Примерные данные вы можете увидеть в списке, приведенном ниже:

  • 2 Мом и меньше — очень низкий уровень
  • 2-5 МОм — низкий уровень
  • 5-10 МОм — уровень ниже нормы
  • 10-50 МОм — хороший уровень
  • 50-100 МОм — высокий уровень
  • 100 Мом и больше — крайне высокий уровень.

Следуя всем рекомендациям, вы сможете корректно провести диагностику сопротивления изоляции кабелей. Помните, что неаккуратность и нарушения в технике безопасности могут привести к непредсказуемым последствиям. Будьте очень внимательны.

Как проводятся измерения сопротивления изоляции

Далее будет рассмотрены вопросы подготовки мегомметра к работе и проведения замеров. Сразу отметим: пересмотреть все возможные варианты – просто невозможно. Тем более – показать работу на всех существующих моделях приборов. Но вот основные приемы тестирования – они в целом сходны. Тем более что информация направлена не электрикам-профессионалам (они сами кого хочешь научат), а тем, кто решился на свой страх и риск провести проверку изоляции в своих жилых владениях.

Как прибор готовится к работе

Задача несложна.

Если это электронный прибор, то необходимо первым делом вставить в батарейный отсек источники питания, естественно, с соблюдением полярности. После этого отсек закрывается. Если используется адаптер питания, то он подключается в соответствующее гнездо прибора.

Прибор старого образца, со встроенной динамомашиной, понятно, в такой операции не нуждается.

Далее, готовятся к работе измерительные провода со щупами.

В комплекте с прибором могут идти два или три измерительных провода. Чаще всего в замерах сопротивления изоляции участвуют два. Один подключается в гнездо прибора «Л» (или «R+»), второе – «З» (или «R-»). Некоторые современные мегомметры и вовсе обходятся этими двумя гнездами подключения.

Но на многих моделях имеется еще и гнездо «Э». И в комплект в этом случае входит экранированный провод несколько необычной конфигурации – у него два контакта для подключения к прибору. Один – обычный для подключения к «З», и второй – для гнезда «Э». значит, основныне измерения будут проводиться этим проводом, а оба разъема подключаются по умолчанию.

Обзор производителей

Ведущими производителями исключительно мегаомметров являются следующие фирмы: «Тетрон», «Мегеон», Fluke, «Актаком», «Радио-Сервис». Приборы советского производства типа ЭС в основном являются стрелочными, немногие из них производятся и в России. Впоследствии на смену им пришли российские ЦС – цифровые измерители. Советская электроизмерительная техника в своём большинстве не нуждалась в торговой марке, каких сейчас десятки – она выпускалась массово на приборостроительных заводах, которыми владел СССР. Сегодня стрелочные омметры также выпускаются – но они являются нишевым предложением. В основном рынок приборостроения занимают цифровые электроизмерители с расширенным функционалом, приближающим их к мультиметрам.

Как работает тестер изоляции

Мегаомметр состоит из источника напряжения, амперметра для измерения тока и рабочих щупов.

В современных цифровых тестерах изоляции источником тока является аккумулятор. В устаревших стрелочных моделях используется ручной генератор с динамо-машиной.

Стрелочный мегаомметр

У мегаомметров три выходные клеммы, к которым подключают измерительные щупы. Первая клемма – это заземление, вторая – объект или линия, а третья – экран. Обычно клеммы «земля» и «линия» находятся рядом, а клемма «экран» удалена от них.

Когда мастер тестирует сопротивление изоляции к контуру заземления, диагностические провода подключают к клеммам заземления и линии. Когда специалист тестирует сопротивление изоляции между жилами кабеля и экраном, к клемме экрана подключают третий провод.


Клеммы заземления и линии слева, клемма экрана справа

Мегаомметр генерирует напряжение в сети, к которой подключается с помощью диагностических щупов. А встроенный в прибор амперметр измеряет силу тока. Данные напряжения и силы тока позволяют вычислить сопротивление по закону Ома: R = U/I, где R – сопротивление, U – напряжение, I – сила тока.

Визуализация закона Ома

Формулировка закона Ома: сила тока в участке цепи прямо пропорциональна напряжению и обратно пропорциональна электрическому сопротивлению данного участка цепи.

Мегаомметр

Изоляция, как и всякий другой материал, подвержена влиянию различных внешних факторов: погода, механический износ и другие. Для своевременного обнаружения дефекта изоляции существует прибор, так называемый мегаомметр. Он производить измерение сопротивления изоляции.

Принцип работы прибора

Для чего предназначен прибор, можно понять из его названия, которое образовано из трёх слов: «мега»— размерность числа 10 6 «ом» — единица сопротивления и «метр» — измерять. Для измерения электрического сопротивления в диапазоне мегаомов используется прибор мегаомметр. Принцип работы прибора основан на применении закона Ома, из которого следует, что сопротивление (R) равно напряжению (U), делённому на ток (I), протекающий через это сопротивление. Следовательно, для того чтобы реализовать этот закон в приборе, нужны:

  1. генератор постоянного тока;
  2. измерительная головка:
  3. клеммы для подключения измеряемого сопротивления;
  4. набор резисторов для работы измерительной головки в пределах рабочей области;
  5. переключатель, коммутирующий эти резисторы;

Реализация мегаомметра по такой схеме требует минимум элементов. Она проста и надёжна. Такие приборы исправно работают уже полвека. Напряжение в таких аппаратах выдаёт генератор постоянного тока, величина которого различна в разных моделях. Обычно оно равно 100, 250, 500, 700, 1000, 2500 вольт. В различных моделях приборов может применяться одно или несколько напряжений из этого ряда. Генераторы отличаются по мощности и соответственно по габаритам. В действие такие генераторы приводятся ручным способом. Для работы нужно покрутить ручку динамо-машины, которая вырабатывает постоянный ток.

Работа с мегаомметром

Работы на каком-либо оборудовании с этим прибором относятся к работам с повышенной опасностью вследствие того, что прибор вырабатывает высокое напряжение и есть вероятность получения электротравмы. Работы с этим прибором разрешается производить персоналу, изучившему инструкцию по работе с прибором, по правилам охраны труда и техники безопасности при работе в электроустановках. Работник должен иметь соответствующую группу допуска и периодически проходить проверки на знание правил работ в электроустановках, знать инструкции по охране труда, в том числе с использование мегаомметра.

Перед началом работ с использование мегаомметра нужно убедиться в целостности прибора визуальным осмотром. На нём должен быть штамп поверки, не должно быть сколов на корпусе прибора, стекло индикатора должно быть целым. Проверяются измерительные щупы на предмет повреждения изоляции. Нужно провести тестирование прибора. Для этого необходимо, если используется стрелочный прибор, установить его на горизонтальную поверхность, чтобы избежать погрешности в измерениях и провести измерения с разведёнными и замкнутыми щупами.

Измерение мегаомметром сопротивления изоляции

Мегаомметр М1101М.

Мегаомметр с ручным генератором напряжения.

Сопротивление изоляции характеризует её состояние в данный момент времени и не является стабильным, так как зависит от целого ряда факторов, основными из которых являются температура и влажность изоляции в момент проведения измерения.

В ГОСТ 183-74 нормы сопротивления изоляции не определены, так как абсолютных критериев минимально допустимого сопротивления изоляции не существует. Они могут быть установлены в стандартах на конкретные виды машин или в ТУ с обязательным указанием температуры, при которой должны проводиться измерения, и методов пересчета показаний приборов, если измерения проводились при иной температуре обмоток.

Измерение сопротивления изоляции обмоток преследует цель установить возможность проведения её испытаний высоким напряжением без повышенного риска повреждения хорошей, но имеющей большую влажность изоляции.

Измерения проводятся мегаомметром, номинальное напряжение которого выбирается в зависимости от номинального напряжения обмотки. Для обмоток с номинальным напряжением до 500 В (660) В применяют мегаомметры на 500 В, для обмоток с напряжением до 3000 В — мегаомметры на 1000 В, для обмоток с номинальным напряжением 3000 В и более — мегаомметры на 2500 В и выше.

Степень увлажнённости изоляции определяется не только по показаниям прибора в момент отсчета, но и характером изменения показания мегаомметра в процессе измерения, которое проводят в течение 1 мин. Запись показаний прибора делают через 15 с (обычное время установления показаний) после начала измерения (R15″) и в конце измерения — через 60 с после начала (R60″). Отношение этих показаний KA = R60″/R15″ называют коэффициентом абсорбции. Его значение определяется отношением тока поляризации к току утечки через диэлектрик — изоляцию обмотки. При влажной изоляции коэффициент абсорбции близок к 1. При сухой изоляции R60 на 30-50 % больше, чем R15.

Мегаомметром измеряется также сопротивление изоляции термопреобразователей, заложенных в машины, и проводов, соединяющих термопреобразователи с доской выводов.

Сопротивление этой изоляции измеряется по отношению к корпусу и к обмоткам машины. Она не рассчитана на работу при высоких напряжениях, поэтому измерение её сопротивления должно проводиться прибором с номинальным напряжением не выше 250 В.

Помимо сопротивления изоляции обмоток при проведении испытаний на месте установки машины измеряют также сопротивление изоляции подшипников, которая устанавливается для предотвращения протекания подшипниковых токов в машинах со стояковыми подшипниками.

Таким образом, сопротивление изоляции разных обмоток одной и той же машины, имеющих разное номинальное напряжение, например обмоток статора и ротора синхронного двигателя, нужно измерять разными мегаомметрами с различными номинальными напряжениями.

Как проверить мегаомметр на исправность

Осуществить проверку мегаомметра на исправность необходимо по следующему способу. К выводам устройства сделать подключение проводов и закоротить выходы. Потом подать энергию и проследить за результатами. Исправный прибор покажет ноль. Потом разъединить и попробовать заново. Во второй раз должна появиться бесконечность. Это показатель — воздушный промежуток.

Неисправности мегаомметра

Неисправности заключаются в отсутствии горения индикаторного табло измерительных результатов в момент включения омметра питания. Также они заключаются в нестабильности измерительных результатов. Причина этих явлений в перегорании предохранителя, неисправности кабеля сетевого питания, ненадежном заземлении и ненадежном контактировании с измерительным объектом.

Неправильная эксплуатация прибора и заводской брак как неисправность

Ремонт мегаомметра

Ремонт заключается в замене предохранителя, устранении неисправности кабельного повреждения, восстановления надежного заземления и достижения надежного контакта для измерительного объекта. Стоит отметить, что техническое обслуживание является лучшей профилактикой для бесперебойной работы. Также оно нужно, чтобы поддержать эксплуатационную надежность и повысить эффективность омметра.

Обратите внимание! В случае обнаружения брака, следует сделать замену оборудования или обратиться в сервисный центр для оказания профессиональной помощи. Необходимость обращения к мастерам для ремонта оборудования

Как проверить изоляцию кабеля с помощью мегаомметра?

В мегаомметрах применяется опасное для жизни и здоровья человека напряжение: от 500 до 2500 В, поэтому выполнять измерения необходимо только в средствах защиты.

Последовательность проверки изоляции трёхжильного кабеля с помощью мегаомметра:

  1. Развести токоведущие жилы кабеля для облегчения измерений. При необходимости очистить жилы от изоляции.
  2. Подключить измерительные щупы к мегаомметру, коснуться одним щупом другого и прокрутить рукоятку несколько раз. Если стрелка покажет значение «0», это значит, что прибор полностью исправен и сопротивление проводника приравнивается к нулевому значению. Если не прикасаться щупами к проводнику, то значение на мегаомметре должно уходить в бесконечность.
  3. Прикоснуться одним щупом к первой токоведущей жиле, а вторым – ко второй, прокрутить рукоятку несколько раз. Если значение уходит в бесконечность, это означает, что изоляция исправна и не имеет каких-либо повреждений.
  4. Держа первый щуп на первой выбранной жиле, второй измерительный щуп переместить на третью токоведущую жилу и прокрутить рукоятку несколько раз. Бесконечное сопротивление означает исправность изоляции между двумя данными проводниками.
  5. Теперь переместить первый щуп на вторую жилу, а второй щуп оставить на своём месте и произвести замер. Значок бесконечности покажет исправность изоляции между вторым и третьим проводником.

Рисунок 3: Варианты подключения мегаомметра для измерений различных параметров

Если кабель имеет дополнительное защитное покрытие, выполненное из какого-либо сплава, металла или стали, то его также следует проверить на возможный пробой с одной из токоведущих жил. Порядок проверки такой же как и с другими жилами.

Когда мегаомметр показывает не бесконечность, а «0», то это означает соприкосновение токоведущих частей между собой. Таким же способом можно определять целостность проводников, или как часто называют данный процесс – «прозвонить» провода.


С этим читают