Солнечные батареи для дачи и дома: виды, принцип работы и порядок расчета гелиосистем

Как выбрать?

Установка гелиосистемы на собственном участке обойдется в приличную сумму. Перед тем как приступать к установке солнечной батареи, необходимо определиться с требующейся мощностью для всех приборов. И в первую очередь необходимо вычислить оптимальную пиковую нагрузку в киловаттах и рациональное условно среднее потребление энергии в киловатт/часах для обеспечения нужд дома или участка.


Для рационального использования солнечного электричества необходимо определить:

  • пиковую нагрузку – для ее определения необходимо сложить мощность всех приборов, включенных одновременно;
  • максимум потребляемой мощности – параметр, необходимый для определения категории приборов, которые должны работать в одно время;
  • суточное потребление – определяется умножением индивидуальной мощности отдельно взятого прибора на время, в течение которого он работал;
  • среднесуточное потребление – определяется путем сложения расхода энергии всех электроприборов за одни сутки.

Все эти данные необходимы для комплектации и стабильной последующей работы солнечной батареи. Полученная информация позволит подобрать более подходящие параметры аккумуляторного блока – дорогостоящего элемента солнечной системы.

Для проведения всех расчетов понадобится лист в клетку или, если вы предпочитаете работать на компьютере, то удобнее всего будет использовать файл Excel. Подготовьте шаблон таблицы с 29-ю колонками.

Укажите названия граф по порядку.

  • Название электроприбора, бытовой техники или инструмента – специалисты рекомендуют начинать описывать энергопотребителей с прихожей, а затем двигаться вкруговую по часовой или против часовой стрелки. Если дом имеет более одного этажа, то отправной точкой всех последующих уровней служит лестница. А также укажите уличные электроприборы.
  • Индивидуальная потребляемая мощность.
  • Время суток начиная от 00 и до 23 часов, то есть для этого вам понадобится 24 колонки. В колонках со временем необходимо будет указать два числа в виде дроби: продолжительность работы в течение конкретного часа/ индивидуальную потребляемую мощность.
  • В 27 колонке укажите суммарное время работы электроприбора за сутки.
  • Для 28 колонки необходимо помножить между собой данные из 27 колонки на индивидуально потребляемую мощность.
  • После заполнения таблицы вычисляется итоговая нагрузка каждого прибора на протяжении каждого часа – полученные данные вводятся в 29 колонку.

После заполнения последней колонки определяется среднесуточное потребления. Для этого все данные в последней колонке суммируют. Но в данном расчете не учитывается потребление всей системы гелиоколлектора. Для вычисления этих данных необходимо учитывать вспомогательный коэффициент при итоговых расчетах.

Такой тщательный и кропотливый подсчет позволит получить развернутую спецификацию энергопотребителей с учетом часовых нагрузок. Поскольку солнечная энергия очень дорогая, ее расход необходимо минимизировать и рационально использовать для питания всех приборов. К примеру, если гелиоколлектор будет использоваться в качестве резервного питания дома, то полученные данные позволят исключить энергоемкие приборы от сети до окончательного восстановления основного электроснабжения.

Для постоянного снабжения дома энергией от солнечной батареи при расчетах часовые нагрузки выдвигаются вперед. Потребление электроэнергии необходимо настроить таким образом, чтобы исключить аварийные ситуации при работе системы и выровнять максимальные нагрузки.

На данном графике наглядно показано, как рационально использовать энергию солнца в доме. Первоначальный график показывает, что нагрузка распределялась в течение суток хаотично: среднесуточная почасовая составляла 750 Вт, а показатель потребления – 18 кВт в час. После точных расчетов и грамотного планирования удалось снизить показатель суточного потребления до 12 кВт/час, а среднесуточную почасовую нагрузку до 500 Вт. Данный вариант распределения энергии также подходит и для резервного питания.

Редкоземельные материалы

Существует несколько типов солнечных панелей из редких металлов, и не все они имеют КПД выше, чем у монокристаллических кремниевых модулей. Однако способность работать в экстремальных условиях позволяет производителям таких солнечных панелей выпускать конкурентоспособную продукцию и проводить дальнейшие исследования.

Панели из теллурида кадмия активно используются при облицовке зданий в экваториальных и аравийских странах, где их поверхность нагревается днем до 70-80 градусов Основными сплавами, применяемыми для изготовления фотоэлектрических элементов, являются теллурид кадмия (CdTe), селенид индия- меди-галлия (CIGS) и селенид индия-меди (CIS).

Кадмий – токсический металл, а индий, галлий и теллур являются довольно редкими и дорогостоящими, поэтому массовое производство солнечных панелей на их основе даже теоретически невозможно. КПД таких панелей находится на уровне 25-35%, хотя в исключительных случаях может доходить до 40%.

Ранее их применяли в основном в космической отрасли, а сейчас появилось новое перспективное направление. Из-за стабильной работы фотоэлементов из редких металлов при температурах 130-150°C их используют в солнечных тепловых электростанциях. При этом лучи солнца от десятков или сотен зеркал концентрируются на небольшой панели, которая одновременно генерирует электроэнергию и обеспечивает передачу тепловой энергии водяному теплообменнику.

В результате нагрева воды образуется пар, который заставляет вращаться турбину и генерировать электроэнергию. Таким образом солнечная энергия преобразуется в электрическую одновременно двумя путями с максимальной эффективностью.

Инструкция по изготовлению

Процесс изготовления солнечной батареи состоит из нескольких этапов:

  1. Подготовка фотоэлементов и пайка проводников.
  2. Создание корпуса.
  3. Сборка элементов и герметизация.

Подготовка фотоэлементов и пайка проводников


На столе собирается набор фотоячеек. Допустим, производитель указывает на мощность 4 Вт и напряжение 0,5 вольт. В таком случае нужно использовать 36 фотоэлементов, чтобы создать солнечную батарею на 18 Вт.

С помощью паяльника, мощность которого составляет 25 Вт, наносятся контуры, образуя припаянные проводки из олова.

Качество пайки является главным требованием для эффективной работы солнечной батареи

Затем все ячейки соединяются между собой в соответствии с электрической схемой. При подключении солнечной панели можно воспользоваться одним из двух способов: параллельным или последовательным соединением. В первом случае плюсовые клеммы соединяются с плюсовыми, минусовые с минусовыми. Затем клеммы с разным зарядом выводятся к аккумулятору. Последовательное подключение предусматривает соединение противоположных зарядов путём поочерёдного скрепления ячеек между собой. После этого оставшиеся концы выводятся к аккумуляторной батарее.

Когда спайка будет завершена, нужно вынести ячейки на солнце, чтобы проверить их работоспособность. Если функциональность в норме, можно начинать сборку корпуса.

Проверка устройства выполняется на солнечной стороне

Как собрать корпус

Подготовить уголки из алюминия с невысокими бортиками. Для метизов предварительно выполняются отверстия. Затем на внутреннюю часть алюминиевого уголка наносится силиконовый герметик (желательно сделать два слоя). От того, насколько качественно он будет нанесён, зависит герметичность, а также длительность службы солнечной батареи Важно обратить внимание на отсутствие незаполненных мест. После этого в раму помещается прозрачный лист поликарбоната и плотно фиксируется. Когда герметик высохнет, крепятся метизы с шурупами, что обеспечит более надёжное крепление.. Учитывая хрупкость конструкции, рекомендуется сначала создать каркас, а затем только устанавливать фотоэлементы. Учитывая хрупкость конструкции, рекомендуется сначала создать каркас, а затем только устанавливать фотоэлементы

Учитывая хрупкость конструкции, рекомендуется сначала создать каркас, а затем только устанавливать фотоэлементы

Сборка элементов и герметизация

  • Очистите прозрачный материал от загрязнений.
  • Разместите фотоэлементы на внутренней стороне листа из поликарбоната на расстоянии 5 мм между ячейками. Чтобы не ошибиться, предварительно сделайте разметку.
  • На каждый фотоэлемент нанесите монтажный силикон.

Чтобы продлить срок службы солнечной батареи, рекомендуется нанести на её элементы монтажный силикон и закрыть задней панелью

После этого прикрепляется задняя панель. После застывания силикона нужно герметизировать всю конструкцию.

Герметизация конструкции обеспечит плотное прилегание панелей друг к другу

Виды солнечных элементов

К видам солнечных элементов относят: гибридные, тонкопленочные, монокристаллические и поликристаллические. Определения вида зависит от технологии изготовления.

Для поликристаллических элементов необходимы заготовки квадратного сечения, что производятся путем охлаждения сплава кремния. Поверхность таких ячеек черного неоднородного цвета и структуры. Такая текстура объясняется наличием кристаллов случайной ориентации. Стоимость поликристаллического элемента намного дешевле в сравнение с другими. Затратная часть на изготовление сокращена за счет выращивания поликристаллов.

Монокристаллические элементы дороже, они изготовляются с кремния высокого качества с наименьшим количеством примесей. Температура выращивания монокристаллов около 1300 градусов, их форма напоминает многоугольник. В отличие от первого вида структура кристалла отличается однотонной и однородной поверхностью синего цвета.

«Гибкие панели» — такое название обрели тонкоплёночные солнечные элементы. Изготовление такого вида ячеек происходит при температуре не больше 300 градусов и напыление производится на металлическую поверхность, пластик или стекло. Напыление не равномерное и кристаллы направлены в разные стороны. Толщина элементов не большая и соответственно они имеют не «заоблачную» стоимость.

Изготовление гибридных элементов отличается напылением тонкого аморфного проводника.

Принцип действия солнечных элементов

Принцип действия фотоэлементов – это излучение электронов под воздействием света. Солнечный элемент, на который попадает свет, создает электродвижущую силу. Значение ее возрастает в зависимости от силы падающего света. Отдаваемый источник тока напрямую зависит от вида солнечного элемента и размера используемой ячейки, о которых мы говорили раньше.

Нагрузка на фотоэлемент предусматривает падение напряжения. Солнечные электростанции снабжаются буферными аккумуляторами, во избежание непредвиденных ситуаций. Причиной установки запасной батареи является зависимость от погодных условий.

Поликристаллические солнечные элементы известны неоднородным размещением кристаллов, и учитывая такое свойство, стоит заметить, что при попадание прямых лучей солнечного света эффективность снижается

Взяв во внимание особенности характеристик, можно сделать вывод о нецелесообразности установок данного вида в некоторых случаях

Монокристаллические солнечные элементы, как раз наоборот целесообразно ориентировать на прямые лучи солнца, выработка в таком случае увеличивается. Большим достоинством в использовании монокристаллических элементов, является бесперебойная работа при минусовых температурах и небольшой облачности.


Рассматривая тонкопленочные элементы, главным достоинством можно отметить простоту в монтаже на изогнутых конструкциях. К сожалению, недостатков намного больше, первым из них является размер установочной панели (используются большие полотна для напыления), при использовании в монтаже огромной площади результат работы будет минимален. О маленьком сроке эксплуатации говорит статистика, где указано, что за два года эффективность падает приблизительно на 20%.

Применение солнечных элементов изначально разрабатывалось для космической промышленности. Солнечные аккумуляторы являются главным источником питания на космических аппаратах. Особая эффективность использования доказана при полетах от Земли к Солнцу, ведь мощность батареи значительно растет.

Целесообразность применения

Взяв во внимание питание элементов солнечными лучами, стоит сказать, что целесообразным будет их применение в тропических и субтропических регионах, где часы солнечного сияния намного больше, нежели в нашей стране. При описанных условиях можно решить проблему энергоснабжения жилых домов

В городах использование солнечных элементов приемлемо в подзарядке машин и освещении улиц. Хотелось бы отметить, что сфера применения с каждым годом растет и развивается, появляются новые более мощные и неуязвимые солнечные элементы. Инновационные разработки позволяют расширить область применения.

Ваша благодарность за мою статью это клик по любой кнопке ниже. Спасибо!

Установка солнечных батарей

Если конструкции будут использоваться для электрообеспечения жилых пространств, то место установки следует выбирать тщательно. Если панели будут загорожены высотными зданиями или деревьями, то трудно будет получить необходимую энергию. Их необходимо разместить там, где поток солнечных лучей максимален, то есть на южную сторону. Конструкцию лучше установить под наклоном, угол которого равен географической широте месторасположения системы.

Солнечные панели должны размещаться таким образом, чтобы хозяин имел возможность периодически очищать поверхность от пыли и грязи или снега, поскольку это приводит к более низкой способности выработки энергии.

Виды

Сегодня различные виды солнечных батарей набирают все большую популярность. На первый взгляд, может показаться, что все солнечные модули одинаковые: большое количество отдельных маленьких фотоэлементов соединены между собой и закрыты прозрачной пленкой. Но, в действительности, все модули отличаются по мощности, конструкции и размерам. И на данный момент производители поделили гелиосистемы на два основных типа: кремниевые и пленочные.

Для бытовых целей устанавливаются солнечные батареи с фотоэлементами из кремния. Они являются на рынке самыми популярными. Из которых можно также выделить три вида – это поликристаллические, монокристаллические, о них уже было рассказано более подробно в статье, и аморфные, на которых остановимся подробнее.

Аморфные – изготавливаются также на основе кремния, но, кроме того, имеют также и гибкую эластичную структуру. Но производятся не из кристаллов кремния, а из силана – другое название кремневодород. Из особенностей аморфных модулей можно отметить отличную эффективность даже при пасмурной погоде и возможность повторять любую поверхность. Но КПД значительно ниже – всего 5%.

Второй тип солнечных панелей – пленочные, вырабатывается на основе нескольких веществ.

  • Кадмий – такие панели были разработаны еще в 70-х годах прошлого столетия и использовались в космосе. Но на сегодняшний день кадмий применяется также и при производстве промышленных и бытовых солнечных электростанций.
  • Модули на основе полупроводника CIGS – разработаны из селенида меди, индия и представляют собой пленочные панели. Индий также широко используется при производстве жидкокристаллических мониторов.
  • Полимер – также используется при производстве солнечных пленочных модулей. Толщина одной панели около 100 нм, но КПД остается на уровне 5%. Но из плюсов можно отметить, что такие системы имеют доступную цену и не выделяют вредные вещества в атмосферу.

Но также на сегодняшний день на рынке представлены менее громоздкие переносные модели. Они специально разработаны для использования во время активного отдыха. Зачастую такие солнечные батареи используются для подзарядки портативных устройств: небольших гаджетов, мобильных телефонов, фотоаппаратов и видеокамер.

Портативные модули делятся на четыре вида.

  • Маломощные – дают минимальный заряд, которого хватает для подзарядки мобильного телефона.
  • Гибкие – могут сворачиваться в рулон и имеют небольшой вес, благодаря этому и обусловлена большая популярность среди туристов и путешественников.
  • Закрепленные на подложке – имеют значительно больший вес, примерно 7-10 кг и, соответственно, дают больше энергии. Такие модули специально разработаны для использования в дальних автомобильных поездках, а также могут использоваться для частичного автономного снабжения энергией загородного домика.
  • Универсальные – незаменимы в пешем туризме, устройство имеет несколько переходников для одновременного заряда различных устройств, вес может достигать 1,5 кг.

Электронные системы поворота

Принцип работы

Принцип работы поворотного устройства очень прост и держится на двух деталях, одна из которых механическая, а другая электронная. Механическая часть поворотного устройства соответственно отвечает за поворот и наклон батареи. А электронная часть регулирует моменты времени и углы наклона, по которым действует механическая часть.

Электрооборудование, используемое вместе с солнечными батареями, заряжается от самих же батарей, что в некотором роде также экономит средства на подпитку электроники.

Положительные стороны

Если говорить о достоинствах электронного оборудования для поворотного устройства, то стоит отметить удобство. Удобство заключается в том, что электронная часть устройства будет в автоматическом режиме управлять процессом поворота батареи.

Данное преимущество не единственное, а является лишь еще одним в списке тех, что были перечислены ранее. То есть помимо экономии средств и повышения КПД, электроника освобождает человека от надобности вручную осуществлять поворот.

Как сделать своими руками

Создать трекер для солнечных батарей своими руками несложно, так как схема его создания проста. Для того чтобы создать работоспособную схему трекера своими руками необходимо иметь в наличии два фоторезистора. Кроме этих составляющих, нужно также приобрести моторное устройство, которое будет поворачивать батареи.

Подключение этого устройства осуществляется при помощи Н – моста. Этот метод подключения позволит преобразовывать ток силой до 500 мА с напряжением от 6 до 15 В. Схема сборки позволить не только понять, как работает трекер для солнечных батарей, но и создать его самому.


Чтобы настроить работу схемы, необходимо провести следующие действия:

  1. Удостовериться в наличия питания на схему.
  2. Провести подключение двигателя с постоянным током.
  3. Установить фотоэлементы нужно рядом, чтобы добиться одинакового количества солнечных лучей на них.
  4. Необходимо выкрутить два подстроечных резистора. Сделать это нужно против часовой стрелки.
  5. Запускается подача тока на схему. Должен включиться двигатель.
  6. Вкручиваем один из подстроечников до тех пор, пока он не упрется. Помечаем это положение.
  7. Продолжить вкручивание элемента до тех пор, пока двигатель не начнет крутиться в противоположную сторону. Помечаем и это положение.
  8. Делим полученное пространство на равные отделы и посередине устанавливаем подстроечник.
  9. Вкручиваем другой подстроечник до тех пор, пока двигатель не начнет немного дергаться.
  10. Возвращаем подстроечник немного назад и оставляем в таком положении.
  11. Для проверки правильности работы можно закрывать участки солнечной батареи и смотреть за реакцией схемы.

Использование

Портативная электроника

Зарядное устройство

Для обеспечения электричеством и/или подзарядки аккумуляторов различной бытовой электроники — калькуляторов, плееров, фонариков и т. п.

На крыше автомобиля Prius,

Для подзарядки электромобилей.

Энергообеспечение зданий

Солнечные батареи на крыше коровника кибуца Гезер (Израиль)

Солнечная батарея на крыше дома

Солнечные батареи крупного размера, как и солнечные коллекторы, широко используются в тропических и субтропических регионах с большим количеством солнечных дней. Особенно популярны в странах Средиземноморья, где их помещают на крышах домов.

Новые дома Испании с марта 2007 года оборудованы солнечными водонагревателями, чтобы самостоятельно обеспечивать от 30 % до 70 % потребностей в горячей воде, в зависимости от места расположения дома и ожидаемого потребления воды. Нежилые здания (торговые центры, госпитали и т. д.) должны иметь фотоэлектрическое оборудование.

В настоящее время переход на солнечные батареи вызывает много критики среди людей. Это обусловлено повышением цен на электроэнергию, загромождением природного ландшафта. Противники перехода на солнечные батареи критикуют такой переход, так как владельцы домов и земельных участков, на которых установлены солнечные батареи и ветряные электростанции, получают субсидии от государства, а обычные квартиросъемщики — нет. В связи с этим Федеральное министерство экономики Германии разработало законопроект который позволит в ближайшем будущем ввести льготы для арендаторов, проживающих в домах, которые обеспечиваются энергией, поступающей от фотовольтаических установок или блочных тепловых электростанций. Наряду с выплатой субсидий владельцам домов, которые используют альтернативные источники энергии, планируется выплачивать дотации проживающим в этих домах квартиросъемщикам.

Дорожное покрытие

Солнечные батареи как дорожное покрытие:

  • В 2014 году в Нидерландах открылась первая в мире велодорожка из солнечных батарей.
  • В 2016 году министр экологии и энергетики Франции Сеголен Руаяль заявила о планах построить 1000 км автодорог со встроенными ударо- и термостойкими солнечными панелями. Предполагается, что 1 км такой дороги сможет обеспечивать электроэнергетические потребности 5000 людей (без учёта отопления)[неавторитетный источник?] .
  • В феврале 2017 года в нормандской деревне Tourouvre-au-Perche французским правительством была открыта дорога из солнечных батарей. Километровый участок дороги оборудован 2880 солнечными панелями. Такое дорожное покрытие обеспечит электроэнергией уличные фонари деревни. Панели каждый год будут вырабатывать 280 мегаватт час электроэнергии. Строительство отрезка дороги обошлось в 5 миллионов евро.
  • Также используется для питания автономных светофоров на дорогах

Использование в космосе

Солнечная батарея на МКС

Солнечные батареи — один из основных способов получения электрической энергии на космических аппаратах: они работают долгое время без расхода каких-либо материалов, и в то же время являются экологически безопасными, в отличие от ядерных и радиоизотопных источников энергии.

Однако при полётах на большом удалении от Солнца (за орбитой Марса) их использование становится проблематичным, так как поток солнечной энергии обратно пропорционален квадрату расстояния от Солнца. При полётах же к Венере и Меркурию, напротив, мощность солнечных батарей значительно возрастает (в районе Венеры в 2 раза, в районе Меркурия в 6 раз).

Использование в медицине

Южнокорейские ученые разработали подкожную солнечную батарею. Миниатюрный источник энергии может быть вживлен под кожу человека с целью бесперебойного обеспечения работы приборов, имплантированных в тело, например, кардиостимулятора. Такая батарея в 15 раз тоньше волоса и может заряжаться, если даже на кожу наносится солнцезащитное средство.

Специальные элементы солнечных батарей, улучшающие их работу

Сейчас сложно сказать, кто первый придумал различные оптимизаторы для солнечных батарей, но уж точно нельзя не вспомнить о диоде Шоттки. Это диод полупроводникового типа, если сравнивать его с прочими конструкциями, тогда падение напряжения при включении напрямую у этого диода будет меньшим.

Также улучшают работу солнечной панели:

  • Солнечный трекер – это устройство необходимо для слежки за движением Солнца, а также для такого поворота солнечной батареи, чтобы на поверхность ее попадало больше солнечных лучей;
  • Сертифицированные коннекторы – нужны для более рационального соединения нескольких панелей солнечных батарей, и, помимо этого, получения необходимого сопротивления.

Отрасль производства таких экологичных источников энергии только развивается. Если говорить о мировых лидерах, то даже заглянув в вики-источник, можно сказать, что это США, Германия и Япония. Но и Россия стала уделять большей интерес данной отрасли. Понятное дело, что важен регион, климатические условия которого поспособствуют распространению таких батарей. Однозначно лидирует в списке таких регионов Краснодарский край.

Как добиться максимальной эффективности

При покупке солнечных батарей для дома очень важно подобрать конструкцию, которая сможет обеспечить жилище электроэнергией достаточной мощности. Считается, что эффективность солнечных батарей в пасмурную погоду составляет приблизительно 40 Вт на 1 квадратный метр за час

В действительности, в облачную погоду мощность света на уровне земли составляет приблизительно 200 Вт на квадратный метр, но 40 % солнечного света – это инфракрасное излучение, к которому солнечные батареи не восприимчивы. Также стоит учитывать, что КПД батареи редко превышает 25 %.

Иногда энергия от интенсивного солнечного света может достигать 500 Вт на квадратный метр, но при расчетах стоит учитывать минимальные показатели, что позволит сделать систему автономного электроснабжения бесперебойной.

Каждый день солнце светит в среднем по 9 часов, если брать среднегодовой показатель. За один день квадратный метр поверхности преобразователя способен выработать 1 киловатт электроэнергии. Если за сутки жильцами дома израсходуется приблизительно 20 киловатт электроэнергии, то минимальная площадь солнечных панелей должна составлять приблизительно 40 квадратных метров.

Однако, такой показатель потребления электроэнергии на практике встречается редко. Как правило, жильцы израсходуют до 10 кВТ в сутки.

Если говорить о том, работают ли солнечные батареи зимой, то стоит помнить, что в данную пору года сильно снижается длительность светового дня, но, если обеспечить систему мощными аккумуляторами, то получаемой за день энергии должно быть достаточно с учетом наличия резервного аккумулятора.

При подборе солнечной батареи очень важно обращать внимание на емкость аккумуляторов. Если нужны солнечные батареи работающие ночью, то емкость резервного аккумулятора играет ключевую роль. Также устройство должно отличаться стойкостью к частой перезарядке

Также устройство должно отличаться стойкостью к частой перезарядке.

Несмотря на тот факт, что стоимость установки солнечных батарей может превысить 1 миллион рублей, затраты окупятся уже в течении нескольких лет, поскольку энергия солнца абсолютно бесплатна.


С этим читают