Гост en 673-2016 стекло и изделия из него. методы определения тепловых характеристик. метод расчета сопротивления теплопередаче

Технические параметры конструкций

Вполне логично, что теплосопротивление конструкции во многом зависит от количества установленных в нем камер


При этом важно понимать, что влияние оказывает именно количество камер, а не толщина каждого отдельного стекла. Подводя итоги, нужно сказать, что у тех стеклопакетов, которые оборудованы большим количеством камер, будут иметь куда более высокие показатели сохранения тепла

К чести современных производителей продукции в данном рыночном сегменте, их товары обладают достаточно высокими показателями во всех отношениях. Благодаря современным технологиям производители получили возможность не просто проектировать конструкции с оптимальным количеством камер, но и заполнять межкамерное пространство газообразными веществами, которые положительно сказываются на общих технико-эксплуатационных характеристиках изделий. Камеры заполняются разнообразными инертными газами, а на их поверхность специально наносятся покрытия низкоэмиссионной категории.

Остекление – эффектное дизайнерское решение

Стоит отметить, что наиболее успешные на сегодняшний день компании-производители оконных конструкций светопрозрачного типа наращивают теплоизоляционные свойства своих изделий по большей мере за счет использования в рамках технологического процесса специфических методик. Это, например, могут быть покрытия с энергосберегающими, солнцезащитными и магнетронными свойствами, а также обеспечение высокого уровня герметизации камер и прочее.

Двухкамерный стеклопакет в разрезе

Теплопередача алюминиевой рамы

Терморазрыв алюминиевой рамы

На рисунке 5 показаны основные конструкционные характеристики алюминиевой рамы с терморазвязкой в виде полиамидных вставок.

Рисунок 5 – Алюминиевая рама с полиамидными вставками: 0,2 < λ ≤ 0,3 Вт/(м2 К) b1 + b2 + b3 + b4 ≤ 0,2 bf

Коэффициент теплопередачи оконной рамы из алюминиевых профилей с терморазрывом зависит от:

  • коэффициента теплопроводности материала терморазрыва;
  • длины терморазрыва, d, то есть минимального расстояния между наружным и внутренним алюминиевыми профилями;
  • ширины терморазрыва, b1+b2+b3+b4;
  • отношения общей ширины терморазрыва (b1+b2+b3+b4) к ширине рамы bf.

Длина терморазрыва

Производители алюминиевых окон обычно декларируют длину (или ширину) полиамидных вставок, которые образуют терморазрыв в алюминиевых профилях рамы. Однако эти полиамидные вставки имеют заделку в алюминиевых профилях не менее 2,5 мм с каждой стороны. Поэтому, если применяются полиамидные вставки, например, длиной 34 мм, то они обеспечивают эффективный терморазрыв в лучшем случае длиной всего 29 мм.

Формула

Формула для вычисления коэффициента теплопередачи рамы алюминиевого окна выглядит следующим образом:

где Af,i /Af,di – отношение площади проекции внутренней поверхности рамы на плоскость окна к полной внутренней поверхности рамы (рисунок 6); Af,e /Af,de – отношение площади проекции наружной поверхности рамы на плоскость окна к полной наружной поверхности рамы (рисунок 6); Rsi – сопротивление теплопередаче внутренней поверхности рамы (прослойки воздуха на внутренней поверхности рамы), (м2 ·К)/Вт; Rse – сопротивление теплопередаче наружной поверхности рамы (прослойки воздуха на наружной поверхности рамы), (м2·К)/Вт; Rf – сопротивление теплопередаче сечения рамы, (м2·К)/Вт.

Рисунок 6 – Параметры формы алюминиевой рамы, которые влияют на величину ее коэффициета теплопередачи

Сопротивление теплопередаче алюминиевой рамы

Сопротивление рамы алюминиевого окна без терморазрыва принимается равным нулю: Rf = 0.

Минимальное сопротивление алюминиевой рамы в зависимости от длины терморазрыва d принимается по сплошной линии графика на рисунке 7.

Рисунок 7 – Величины Rf для алюминиевой рамы с терморазрывом

Заштрихованная область на рисунке 7 выше сплошной линии соответствует величинам сопротивления теплопередаче рамы, полученным для различных алюминиевых окон при различных условиях в различных европейских странах. Поэтому верхнюю линию надо понимать как практический максимум сопротивления теплопередаче алюминиевых рам для заданных величин терморазрыва d.

Испытания по определению коэффициента сопротивления теплопередаче

Тест был разработан с целью получить величину, которая – как ожидалось – будет иметь важное значение и станет показательной. К сожалению, разработанная методика давала систематическую погрешностью. Метод испытаний, используемый для определения коэффициента сопротивления теплопередаче – это тест ASTM (Американского Сообщества Материалов и Испытаний; American Society for Testing and Materials)

Тест был разработан с целью получить величину, которая – как ожидалось – будет иметь важное значение и станет показательной. К сожалению, разработанная методика давала систематическую погрешностью. Из-за способа испытаний тест оказывает предпочтение волокнистым теплоизоляционным материалам: стекловолокну, каменной вате и целлюлозному волокну. Очень коротко в методике упоминаются сплошные теплоизоляционные материалы, такие, как пеностекло, пробковый материал, монтажный полистирол или пенополиуретан

Метод испытаний, используемый для определения коэффициента сопротивления теплопередаче – это тест ASTM (Американского Сообщества Материалов и Испытаний; American Society for Testing and Materials)

Тест был разработан с целью получить величину, которая – как ожидалось – будет иметь важное значение и станет показательной. К сожалению, разработанная методика давала систематическую погрешностью

Из-за способа испытаний тест оказывает предпочтение волокнистым теплоизоляционным материалам: стекловолокну, каменной вате и целлюлозному волокну. Очень коротко в методике упоминаются сплошные теплоизоляционные материалы, такие, как пеностекло, пробковый материал, монтажный полистирол или пенополиуретан.

В тесте никак не учитывается движение воздуха (ветер) или количество влаги (водяного пара). Другими словами, тест, проводимый для определения коэффициента сопротивления теплопередаче – это исследования в нереальных условиях. Например, коэффициент сопротивления теплопередаче стекловолокна составляет R-3,5. Такое значение имеет место при абсолютном отсутствии ветра и нулевой влажности. А отсутствие ветра и нулевую влажность трудно назвать реальными условиями. Во всех домах есть протечки воздуха, и они зачастую водопроницаемы. Водяной пар из атмосферы, из душа, при приготовлении пищи, из выдыхаемого воздуха, т.д. постоянно циркулируют в помещениях. Если помещения не вентилируются должным образом, водяной пар изнутри дома будет очень быстро вбираться изоляцией над потолком. Даже малое количество влаги вызовет значительное падение коэффициента сопротивления теплопередаче волокнистого изоляционного материала: не меньше, чем на 50%, а то и больше.

Термическое сопротивление

Любая стена, дверь, окно служит для ограждения от внешних природных воздействий. Они способны в разной степени защитить жилище от холодов, так как коэффициент проводимости у них отличается. Для каждого ограждения коэффициент рассчитываться должен по-разному. Точно так же ведется расчет для внутренних перегородок, стен, дверей, неотапливаемых частей дома.

Если в здании имеются части, которые не протапливаются, необходимо утеплять стены между ними и другими помещениями так же качественно, как и внешние. Воздух – плохой переносчик тепла, потому что там частицы находятся на значительном отдалении друг от друга. Выходит, что если изолировать некоторые воздушные массы герметично, получится неплохая изоляция от холода. Для уточнения данных производится расчет приведенного сопротивления. Данные показывают, насколько хорошо утеплено жилище, нет ли необходимости в дополнительном утеплении. Современные материалы

В старых домах делали всегда по две рамы, чтобы между ними находилось некоторое количество воздушных масс. Теперь по такому же принципу делаются стеклопакеты, но воздух между стеклами откачивается полностью, чтобы частиц, проводящих тепло, вообще не было. Термическое сопротивление в них значительно превышает показатели старых окон. Входные двери делаются по такому же принципу. Стараются сделать небольшой коридор, предбанник, который сохранит тепло в доме.

Если в жилище установить дополнительные резиновые уплотнители в несколько слоев, это позволит повысить теплоизоляционные свойства. Современные входные двери создаются многослойными, там помещается несколько разных слоев утеплительного материала. Конструкция становится практически герметичной, дополнительное утепление часто не требуется. Сопротивление теплопередаче стен обычно не такое хорошее, потому используются дополнительные материалы для утепления.

Лирическое отступление

Некоторые могут возразить, мол, строят стены из чистого «Поревита» толщиной 300 мм и в домах тепло — это верно.


Во-первых, не всегда уличная температура держится в своих минимальных значениях и 7–10 морозных дней можно потерпеть в прохладном здании, а во-вторых, можно добиться комфортной температуры в помещении увеличив расход тепловой энергии (газ, дрова, электричество).

Полученный показатель дает лишь рекомендованную толщину стен, при соблюдении которой, получите температуру в +20 °C в помещениях, при соблюдении технологий возведения прочих ограждающих конструкций: пол, потолок, окна, двери.

Сплошная теплоизоляция

Большинство сплошных изоляционных материалов устанавливаются в виде плит или матов. И для большинства из них характерна одна и та же общая проблема. Они, как правило, прилегают к конструкциям не настолько плотно, чтобы предотвратить инфильтрацию воздуха

Наиболее известным видом сплошной теплоизоляции является вспененный полистирол. Другие сплошные теплоизоляционные материалы: пробка, пеностекло и полиизоцианат (полиуретан) или полиизоцианатовые маты. Последние два – это разновидности полиуретановой пены. Каждый из этих изоляционных материалов идеально подходит для многих сфер применения. Пеностекло довольно долгое время использовалось для изоляции холодных и горячих емкостей, особенно в местах выхода пара. Пробка – не менее старый резервный изоляционный материал для холодильного оборудования. EPS или вспененный полистирол, похоже, используется повсюду: от одноразовых стаканчиков и контейнеров для пищи до опоясывающей теплоизоляции фундаментов и кладки стен.

Полиуретановые маты стали уже стандартным решением для теплоизоляции крыш, особенно при проведении работ горячим способом. Их также широко используют для внешней обшивки новостроящихся домов. Коэффициент сопротивления теплопередаче полиуретанового мата, разумеется, выше, чем у любых других видов сплошной изоляции. Все из этих видов сплошной изоляции характеризуются намного более высокой производительностью, чем волокнистая теплоизоляция, вне зависимости от того, задействованы ли ветер и влага.

Если маты не наклеиваются на блочную стену, будет присутствовать инфильтрация воздуха позади него. Тогда маты становятся фактически бесполезными, поскольку воздух проходит через дренажные отверстия кладки в обход теплоизоляции и сводит на нет ее эффективность

Большинство сплошных изоляционных материалов устанавливаются в виде плит или матов. И для большинства из них характерна одна и та же общая проблема. Они, как правило, прилегают к конструкциям не настолько плотно, чтобы предотвратить инфильтрацию воздуха. И, если поднимается ветер и воздух попадает за теплоизоляцию, то уже не имеет значения, какова толщина этих матов. Такое часто бывает в конструкциях, где маты укладываются между кирпичной кладкой и блочной стеной.

Если маты не наклеиваются на блочную стену, будет присутствовать инфильтрация воздуха позади него. Тогда маты становятся фактически бесполезными, поскольку воздух проходит через дренажные отверстия кладки в обход теплоизоляции и сводит на нет ее эффективность

При установке сплошной изоляции этому вопросу должно быть уделено особое внимание. Чтобы предотвратить движение воздуха в обход теплоизоляции, швы в примыкании к конструкциям должны быть уплотнены и герметизированы

Напыляемый пенополиуретан – единственный вид сплошного теплоизоляционного материала, который полностью защищает сам себя от инфильтрации воздуха. При надлежащем выполнении работ по монтажу сцепление напыляемой пены с поверхностью конструкции и разбухание материала обеспечивают практически полную герметизацию

Напыляемый пенополиуретан – единственный вид сплошного теплоизоляционного материала, который полностью защищает сам себя от инфильтрации воздуха. При надлежащем выполнении работ по монтажу сцепление напыляемой пены с поверхностью конструкции и разбухание материала обеспечивают практически полную герметизацию. А, по моему мнению, большинство потерь тепла в стенах дома устраняется более за счет герметизации, чем теплоизоляции.

Тепло почти не перемещается горизонтально, так, как оно это делает в вертикальном направлении. Следовательно, если дом не имеет теплоизоляции на стенах, но имеет абсолютно воздухонепроницаемое уплотнение, разница в теплопотерях будет незначительная. Однако, если не сделана теплоизоляция потолков, ситуация в корне меняется.

Напыляемый полиуретан создает наиболее эффективную преграду инфильтрации воздуха. Это – единственный материал, который, при надлежащей установке, способен заполнить угловые соединения, консольные опоры, сдвоенные стойки, фундаментные плиты, плиты перекрытия, т.д. Любой материал с наивысшим коэффициентом сопротивления теплопередаче не будет эффективен, если не создает преграду для движения воздуха.

Один с четвертью дюйм полиуретана (3 см), напыленного на стену, предотвратит больше теплопотерь, чем волокнистая теплоизоляция восьмидюймовой толщины (20 см), набитая в стены. При этом полиуретан не только обеспечивает лучшую теплоизоляцию, он также придает конструкциям дополнительную прочность.

Основные виды стеклопакетов

Стеклопакет (СП), являясь основной частью окна, конструктивно состоит из нескольких стекол, соединенных металлическими (промежуточными) рамками. Промежуток между стеклами называется камерой.


Чаще всего используются три основных вида стекольных пакетов:

  • однокамерные — два стекла (внутреннее и наружное);
  • двухкамерные — три стекла (внутреннее, наружное и промежуточное);
  • трехкамерные — четыре стекла (внутреннее, наружное и 2 промежуточных).

Толщина используемых стекол варьируется от 4 до 6 мм. Для остекления объектов с повышенными требованиями к прочности (большие ветровые нагрузки) могут применяться стекла толщиной 8-10 мм. Промежуток между стеклами может варьироваться — от 8 до 36 мм. Диапазон толщин стеклопакетов составляет от 14 до 60 мм.

СТП самого стекла сравнительно мало ввиду его большой теплопроводности. Для уменьшения теплопотерь межстекольное пространство, заполняется воздухом или инертным газом (аргоном Ar, криптоном Kr, азотом N2). Газонаполненные камеры дают основной вклад в повышение СТП стеклопакета Rсп. Существенно повысить значение Rсп удается также с помощью создания вакуума в камере, но это приводит к резкому удорожанию конечного изделия.

По показателю звукоизоляции

По показателю звукоизоляции оконный блоки подразделяются на классы со снижением воздушного шума потока городского транспорта

Класс Величина снижения воздушного шума потока городского транспорта, дБа
А Свыше 36
Б 34-36
В 31-33
Г 28-30
Д 25-27

Примечание 1: изделиям с величиной воздушного шума потока городского транспорта ниже 25 дБа класс не присваивают

Примечание 2: в случае если снижение уровня шума потока городского транспорта достигается в режиме проветривания, к обозначению класса звокоизоляции добавляют букву «П». Например, обозначение класса звукоизолции «ДП» обозначает, что снижение уровня воздушного шума потока городского транспорта от 25 до 27 дБа для данного изделия достигается в режиме проветривания

Тепловое сопротивление кристалл — окружающая среда

14.04.2014 | Рубрика: Параметры ОУ

Параметры операционного усилителя — Тепловое сопротивление кристалл — окружающая среда

Тепловое сопротивление кристалл — окружающая среда (θJA) определяется как отношение разности температур между кристаллом и окружающей прибор средой к рассеиваемой прибором мощности. Измеряется тепловое сопротивление в градусах Цельсия на ватт.

Тепловое сопротивление между кристаллом и окружающей средой складывается из теплового сопротивления между кристаллом и корпусом (θJC) и теплового сопротивления между корпусом и окружающей средой (θCA).

θJA является лучшим показателем для оценки максимально допустимой рассеиваемой мощности, когда корпус ОУ не имеет тепловой связи с другими элементами конструкции.

Значение θJA указывается в справочной документации для различных корпусов ОУ Температуру кристалла ОУ можно рассчитать по формуле

ТА — температура окружающего воздуха;

TJ — температура кристалла;

PD — рассеиваемая прибором мощность;

θJC — тепловое сопротивление кристалл — корпус;

θCH — тепловое сопротивление корпус — радиатор;

θHA — тепловое сопротивление радиатор — окружающий воздух;

θJA — тепловое сопротивление кристалл — окружающий воздух.

Конструирование радиаторов основывается на результатах измерений их теплового сопротивления θHA, выполняемых их изготовителями, и осуществляется по аналогии с электрическими цепями: разность температур при этом эквивалентна разности напряжений, тепловое сопротивление является аналогом электрического сопротивления, а мощность — аналогом тока.


На рисунке приведено сравнение двух радиаторов при двух разных значениях рассеиваемой мощности. Точкой отсчёта является температура окружающего воздуха (0 В для электрического эквивалента). Так как температура внутри корпуса прибора и в разных условиях его работы может изменяться в широких пределах, в качестве ТА используется максимальное ожидаемое значение температуры окружающего воздуха.

Тепловое сопротивление и его электрический эквивалент.

При выполнении тепловых расчётов первый шаг — это определение температуры радиатора. Для этого надо выделяемую прибором мощность умножить на значение теплового сопротивления радиатор — окружающий воздух. Следующий шаг — определение температуры корпуса прибора и так далее.

Как следует из таблицы, различие тепловых сопротивлений радиатор — окружающая среда и корпус — радиатор приводит к большому различию температур кристаллов при одной и той же рассеиваемой мощности: 37 и 158°С

Отсюда следует, что очень важно правильно выбрать радиатор для эффективного охлаждения мощных приборов

Установка вентиляторов значительно увеличивает эффективность радиаторов. По этой причине практически во всех персональных компьютерах радиатор процессора обдувается вентилятором.

Результат

Параметры центральной зоны остекления (Угол установки 90°)

Формула стеклопакета R0ц проект, м2K/Вт U, Вт/м2K

Требуемое проектное значение R0пр для условий г. Москва составляет 0.0 м2 K/Вт. (согласно СП 50.13330.2012 с учетов изм.№1)

В расчете теплотехнических параметров остекления для условий г. Москва учитывались: Температура наружного воздуха – -25°С, температура внутри помещения +20°С Скорость ветра вблизи остекления 2,0 м/c. Расчет светотехнических параметров остекления ведется на основании: ГОСТ EN 410 — 2014 Стекло — Методы определения светотехники. Расчет теплотехнических параметров остекления ведется на основании: ГОСТ EN 673-2016 Стекло и изделия из него. Методы определения тепловых характеристик. Метод расчета сопротивления теплопередаче; СП 50.13330.2012 Тепловая защита зданий; СП 131.13330.2018 Строительная климатология.

Термины и сокращения

Светопропускание (LT) – отношение светового потока, проходящего сквозь стекло, к падающему световому потоку, выражаемое иллюминентом D65 со спектральной плотностью между 380 и 780 нм.

Светоотражение (LR) – отношение светового потока, отраженного от стекла, к падающему световому потоку, выраженному иллюминентом D65.

Солнечный фактор (SF) – или общая пропускаемая энергия – для остекленной стены это отношение всей солнечной энергии, поступающей в помещение через стекло, к энергии падающего солнечного потока.

Заявленное значение коэффициента теплопередачи (U) – Величина, характеризующая передачу тепла через центральную зону вертикального остекления без учета краевых эффектов. равная отношению плотности стационарного теплового потока к пере- паду температур окружающей среды по разные стороны остекления. Значение рассчитывается для вертикального остекления при стандартизированных граничных условиях.

Проектное значение сопротивление теплопередаче (R0проект) – величина, обратная коэффициенту теплопередачи, характеризует свойство остекления препятствовать переносу теплоты от среды с высокой температурой к среде с низкой температурой, рассчитанного с учетом расположения остекления и условия окружающей среды в месте установки остекления.

Точка росы – это температура, при которой начинает образовываться конденсат, т. е. температура до которой необходимо охладить воздух, чтобы относительная влажность достигла 100%. Расчет данного параметра рекомендуется вести на конструкцию в целом для получения более достоверного результата.

SentryGlass – материал, используемый для изготовления многослойных стекол Dupont Sentry Glass SG5000.

Зак или ESG (Einscheiben-Sicherheitsglas) — однослойное безопасное стекло, закаленное стекло.

ТУ или TVG (Teilvorgespanntes Glas) термоупрочненное небезопасное стекло.

VSG (Verbund-Sicherheitsglas) многослойное безопасное стекло.

Enameled – стемалит, окрашенное закаленное стекло.


С этим читают